\(\int x^2 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx\) [121]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 181 \[ \int x^2 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=-\frac {b x^2 \sqrt {d+c^2 d x^2}}{16 c \sqrt {1+c^2 x^2}}-\frac {b c x^4 \sqrt {d+c^2 d x^2}}{16 \sqrt {1+c^2 x^2}}+\frac {x \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{8 c^2}+\frac {1}{4} x^3 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))-\frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))^2}{16 b c^3 \sqrt {1+c^2 x^2}} \]

[Out]

1/8*x*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/c^2+1/4*x^3*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)-1/16*b*x^2*(c^
2*d*x^2+d)^(1/2)/c/(c^2*x^2+1)^(1/2)-1/16*b*c*x^4*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-1/16*(a+b*arcsinh(c*x)
)^2*(c^2*d*x^2+d)^(1/2)/b/c^3/(c^2*x^2+1)^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {5806, 5812, 5783, 30} \[ \int x^2 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=\frac {x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{8 c^2}+\frac {1}{4} x^3 \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2}{16 b c^3 \sqrt {c^2 x^2+1}}-\frac {b x^2 \sqrt {c^2 d x^2+d}}{16 c \sqrt {c^2 x^2+1}}-\frac {b c x^4 \sqrt {c^2 d x^2+d}}{16 \sqrt {c^2 x^2+1}} \]

[In]

Int[x^2*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]),x]

[Out]

-1/16*(b*x^2*Sqrt[d + c^2*d*x^2])/(c*Sqrt[1 + c^2*x^2]) - (b*c*x^4*Sqrt[d + c^2*d*x^2])/(16*Sqrt[1 + c^2*x^2])
 + (x*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/(8*c^2) + (x^3*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/4 - (
Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^2)/(16*b*c^3*Sqrt[1 + c^2*x^2])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5783

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*S
imp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ
[e, c^2*d] && NeQ[n, -1]

Rule 5806

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(
f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSinh[c*x])^n/(f*(m + 2))), x] + (Dist[(1/(m + 2))*Simp[Sqrt[d + e*x^2]
/Sqrt[1 + c^2*x^2]], Int[(f*x)^m*((a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2]), x], x] - Dist[b*c*(n/(f*(m + 2)))
*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]], Int[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a,
 b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])

Rule 5812

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSinh[c*x])^n/(e*(m + 2*p + 1))), x] + (-Dist[f^2*((m - 1)/(c^2*
(m + 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x], x] - Dist[b*f*(n/(c*(m + 2*p + 1)
))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1)
, x], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0
]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{4} x^3 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))+\frac {\sqrt {d+c^2 d x^2} \int \frac {x^2 (a+b \text {arcsinh}(c x))}{\sqrt {1+c^2 x^2}} \, dx}{4 \sqrt {1+c^2 x^2}}-\frac {\left (b c \sqrt {d+c^2 d x^2}\right ) \int x^3 \, dx}{4 \sqrt {1+c^2 x^2}} \\ & = -\frac {b c x^4 \sqrt {d+c^2 d x^2}}{16 \sqrt {1+c^2 x^2}}+\frac {x \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{8 c^2}+\frac {1}{4} x^3 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))-\frac {\sqrt {d+c^2 d x^2} \int \frac {a+b \text {arcsinh}(c x)}{\sqrt {1+c^2 x^2}} \, dx}{8 c^2 \sqrt {1+c^2 x^2}}-\frac {\left (b \sqrt {d+c^2 d x^2}\right ) \int x \, dx}{8 c \sqrt {1+c^2 x^2}} \\ & = -\frac {b x^2 \sqrt {d+c^2 d x^2}}{16 c \sqrt {1+c^2 x^2}}-\frac {b c x^4 \sqrt {d+c^2 d x^2}}{16 \sqrt {1+c^2 x^2}}+\frac {x \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{8 c^2}+\frac {1}{4} x^3 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))-\frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))^2}{16 b c^3 \sqrt {1+c^2 x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.62 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.71 \[ \int x^2 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=-\frac {-16 a c x \left (1+2 c^2 x^2\right ) \sqrt {d+c^2 d x^2}+16 a \sqrt {d} \log \left (c d x+\sqrt {d} \sqrt {d+c^2 d x^2}\right )+\frac {b \sqrt {d+c^2 d x^2} \left (8 \text {arcsinh}(c x)^2+\cosh (4 \text {arcsinh}(c x))-4 \text {arcsinh}(c x) \sinh (4 \text {arcsinh}(c x))\right )}{\sqrt {1+c^2 x^2}}}{128 c^3} \]

[In]

Integrate[x^2*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]),x]

[Out]

-1/128*(-16*a*c*x*(1 + 2*c^2*x^2)*Sqrt[d + c^2*d*x^2] + 16*a*Sqrt[d]*Log[c*d*x + Sqrt[d]*Sqrt[d + c^2*d*x^2]]
+ (b*Sqrt[d + c^2*d*x^2]*(8*ArcSinh[c*x]^2 + Cosh[4*ArcSinh[c*x]] - 4*ArcSinh[c*x]*Sinh[4*ArcSinh[c*x]]))/Sqrt
[1 + c^2*x^2])/c^3

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(337\) vs. \(2(155)=310\).

Time = 0.18 (sec) , antiderivative size = 338, normalized size of antiderivative = 1.87

method result size
default \(\frac {a x \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{4 c^{2} d}-\frac {a x \sqrt {c^{2} d \,x^{2}+d}}{8 c^{2}}-\frac {a d \ln \left (\frac {c^{2} d x}{\sqrt {c^{2} d}}+\sqrt {c^{2} d \,x^{2}+d}\right )}{8 c^{2} \sqrt {c^{2} d}}+b \left (-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (c x \right )^{2}}{16 \sqrt {c^{2} x^{2}+1}\, c^{3}}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (8 c^{5} x^{5}+8 c^{4} x^{4} \sqrt {c^{2} x^{2}+1}+12 c^{3} x^{3}+8 c^{2} x^{2} \sqrt {c^{2} x^{2}+1}+4 c x +\sqrt {c^{2} x^{2}+1}\right ) \left (-1+4 \,\operatorname {arcsinh}\left (c x \right )\right )}{256 c^{3} \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (8 c^{5} x^{5}-8 c^{4} x^{4} \sqrt {c^{2} x^{2}+1}+12 c^{3} x^{3}-8 c^{2} x^{2} \sqrt {c^{2} x^{2}+1}+4 c x -\sqrt {c^{2} x^{2}+1}\right ) \left (1+4 \,\operatorname {arcsinh}\left (c x \right )\right )}{256 c^{3} \left (c^{2} x^{2}+1\right )}\right )\) \(338\)
parts \(\frac {a x \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{4 c^{2} d}-\frac {a x \sqrt {c^{2} d \,x^{2}+d}}{8 c^{2}}-\frac {a d \ln \left (\frac {c^{2} d x}{\sqrt {c^{2} d}}+\sqrt {c^{2} d \,x^{2}+d}\right )}{8 c^{2} \sqrt {c^{2} d}}+b \left (-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (c x \right )^{2}}{16 \sqrt {c^{2} x^{2}+1}\, c^{3}}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (8 c^{5} x^{5}+8 c^{4} x^{4} \sqrt {c^{2} x^{2}+1}+12 c^{3} x^{3}+8 c^{2} x^{2} \sqrt {c^{2} x^{2}+1}+4 c x +\sqrt {c^{2} x^{2}+1}\right ) \left (-1+4 \,\operatorname {arcsinh}\left (c x \right )\right )}{256 c^{3} \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (8 c^{5} x^{5}-8 c^{4} x^{4} \sqrt {c^{2} x^{2}+1}+12 c^{3} x^{3}-8 c^{2} x^{2} \sqrt {c^{2} x^{2}+1}+4 c x -\sqrt {c^{2} x^{2}+1}\right ) \left (1+4 \,\operatorname {arcsinh}\left (c x \right )\right )}{256 c^{3} \left (c^{2} x^{2}+1\right )}\right )\) \(338\)

[In]

int(x^2*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/4*a*x*(c^2*d*x^2+d)^(3/2)/c^2/d-1/8*a/c^2*x*(c^2*d*x^2+d)^(1/2)-1/8*a/c^2*d*ln(c^2*d*x/(c^2*d)^(1/2)+(c^2*d*
x^2+d)^(1/2))/(c^2*d)^(1/2)+b*(-1/16*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/c^3*arcsinh(c*x)^2+1/256*(d*(c^2*
x^2+1))^(1/2)*(8*c^5*x^5+8*c^4*x^4*(c^2*x^2+1)^(1/2)+12*c^3*x^3+8*c^2*x^2*(c^2*x^2+1)^(1/2)+4*c*x+(c^2*x^2+1)^
(1/2))*(-1+4*arcsinh(c*x))/c^3/(c^2*x^2+1)+1/256*(d*(c^2*x^2+1))^(1/2)*(8*c^5*x^5-8*c^4*x^4*(c^2*x^2+1)^(1/2)+
12*c^3*x^3-8*c^2*x^2*(c^2*x^2+1)^(1/2)+4*c*x-(c^2*x^2+1)^(1/2))*(1+4*arcsinh(c*x))/c^3/(c^2*x^2+1))

Fricas [F]

\[ \int x^2 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=\int { \sqrt {c^{2} d x^{2} + d} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )} x^{2} \,d x } \]

[In]

integrate(x^2*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*d*x^2 + d)*(b*x^2*arcsinh(c*x) + a*x^2), x)

Sympy [F]

\[ \int x^2 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=\int x^{2} \sqrt {d \left (c^{2} x^{2} + 1\right )} \left (a + b \operatorname {asinh}{\left (c x \right )}\right )\, dx \]

[In]

integrate(x**2*(a+b*asinh(c*x))*(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x**2*sqrt(d*(c**2*x**2 + 1))*(a + b*asinh(c*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int x^2 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate(x^2*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: expt: undefined: 0 to a negative exponent.

Giac [F]

\[ \int x^2 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=\int { \sqrt {c^{2} d x^{2} + d} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )} x^{2} \,d x } \]

[In]

integrate(x^2*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a)*x^2, x)

Mupad [F(-1)]

Timed out. \[ \int x^2 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=\int x^2\,\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,\sqrt {d\,c^2\,x^2+d} \,d x \]

[In]

int(x^2*(a + b*asinh(c*x))*(d + c^2*d*x^2)^(1/2),x)

[Out]

int(x^2*(a + b*asinh(c*x))*(d + c^2*d*x^2)^(1/2), x)